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I M P A C T  A G A I N S T  A S P I N D L E - S H A P E D  SOLID B O D Y  

S U B M E R G E D  IN A LIQUID OF I N F I N I T E  D E P T H  

M. V. Norkin UDC 532.5 

The problem under consideration is that of vertical impact against a spindle-shaped solid body obtained 
by revolving a circular arc around the line passing through the extreme points of the arc, with half the body 
submerged in an ideal incompressible liquid of infinite depth. After making an odd extension of the potential 
through the free surface, the problem is split into questions of translation and rotation. The potential of 
liquid motion caused by the translational motion of the body is found in quadratures in bipolar coordinates. 
In the case of rotation, the problem is reduced to solving an integral Fredholm equation of the second order. 
The dependence of the apparent mass of the liquid and the apparent moment of inertia on the problem's 
parameters a and b (a is the radius of the arc of revolution and b is the coordinate of the arcs  center) is 
studied. For a ball (b = 0), the result coincides with the classical result [1]. When b = a, agreement with the 
limiting case of a degenerate torus [2] is obtained. A condition for nonseparation of the impact is derived. The 
problem of flow around these surfaces was dealt with in [3]. 

1. S t a t e m e n t  of  t h e  P r o b l e m .  The potential r of velocities acquired by the liquid particles at the 
moment immediately following impact satisfies the Laplace equation in all the space occupied by the liquid 
[4]: A r  = 0. It also satisfies the boundary conditions on the wet surface of the body and on the free surface 
of the liquid 

0 r  
On vonz +~o(zn~ Znz), r O. 

Here, v0 and w are translational and angular velocities; n~ and nz are the projections of the outer normal 
vector on the x and z axes of the Cartesian coordinates. At infinity, r ~ 0. Making an odd extension of the 
potential r through the free surface, we come to the outer Neumann problem. The function r has the form 

r = v0r + w r  (1.1) 

where r is the potential of liquid motion caused by the translational motion of the body along the symmetry 
axis z with unit velocity; r corresponds to rotation of the body around the !/axis with a constant angular 
velocity equal to unity. The apparent liquid mass m and moment J of inertia are determined from the formuls 

0r ds, 0r 

S S 

(S is the wet surface of the body and p is the liquid density). 
2. T r a n s l a t i o n a l  M o t i o n .  In the rotationally symmetric case, a stream function ~b can be introduced 

0r 1 O~b 0r 1 O~, 

Or r Oz Oz r Or 

To find ~, we use bipolar coordinates a,/3, and ~ [5, p. 281] connected with the cylindrical coordinates r and 
z t-hrough the relations 

c sin a c sinh 
= , z =  ( 2 . 1 )  

r cosh d -  cosa  cosh d -  cosa  
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Fig. 1 

(c is a scale factor, 0 ~< a < rr, - ~ o  < /3  < 0% -~" < ~o ~< rr). 
The coordinate sys tem in quest ion is suitable for solving boundary  value problems of the potential  theory for 
the region bounded  by a spindle-shaped surface of revolution a = a0 (Fig. 1) as well as for the region located 
between two nonintersect ing spheres. The angular coordinate is denoted  by % The constants c and a0 can 
be expressed through the parameters  a and b of the problem: c = a sin a0 and b = a cos a0. For the stream 
function r = r (a , /3 ) ,  we have the following boundary  value problem in bipolar  coordinates: 

0 0 r  0 r  r 2 c 2 sin 2 oe 0 
r ( ~ o , / 3 )  - 2 - 2 ( c o s h / 3  - cos  ,~o) 2' r  = 0. (2.2) 

The exterior of the spindle-shaped surface corresponds with the region 0 <~ a < a0, - o o  < /3 < oo, and 
- r r  < c 2 ~< a'. Separat ion of variables for problem (2.2) leads to a solution of the form 

sin a 

~b (o~, /3) = ~/2 cosh/3 - 2 cos a f g ( r )  cos/3rpl_l/2+i~(cos a) dr 
0 

[Pl_l/2+i~(cosc~ ) is the associated Legendre function with a complex subscript  and g (r)  is an arbi trary 

function]. The condition at infinity, where a,  /3 --+ 0, is satisfied since the int roduced Legendre function 
vanishes at c~ = 0 and the factor in front of the integral is a bounded  function. Satisfaction of the boundary  
condition leads to decomposi t ion of the given function in the cosine Fourier integral 

oo 
2 c 2 sin a0 

f g (7) cos/3,~1/2+~(cos s0) d, = 
(2 cosh/3 - 2 cos c~0)3/2" 

0 

From this we find the unknown function after performing the Fourier transform: 

g (r) = - 2  c2pll/2+ir( - cos ao)/(Pll/2+ir(COS so) cosh 7rr). 

The integral representat ion and the differentiation formula for the Legendre function [5, p. 239; 6, 
p. 263] were used here: 

c<? 
_ 2 cos_h ~, [ cos/3~a/3 

P-t /2+ir ( -  OgO ) (2.3) COS I 

r~ J x/2 cosh/3  - 2 cos s 0 '  
0 

d 
da0 P - 1 / 2 + i r ( -  cos a0) = -P_l l /2+i r  ( -  cos a0). (2.4) 

We write the final expression for the s t ream function ~b: 

2 C 2 sin c~ 7 cos/3r 
~b (a,/3) = ~/2 cosh/3 - 2 cos a cosh 7rr 

0 

~1/2+i~(- cos s0) 

Pl_l/2+ir(COS C~O) ~ l / 2 + i T ( c o s  a )  dr. 

(An analogous expression was obtained in the problem of flow [3], where the apparent  mass of the liquid is 
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TABLE 1 
bla A 

-0 .7  0.022 
-0 .5  0.112 
-0 .3  0.331 
-0.1 O.745 
0.1 1.426 
0.3 2.456 
0.5 3.919 
0.7 5.914 
0.8 7.145 
0.9 8.553 

// 

0.003 
0.009 
0.0091 
0.002 
0.004 
0.067 
0.288 
0.8271 
1.282 
1.903 

R 
0.30 
0.21 
0.13 
0.04 
0.04 
0.12 
0.19 
0.27 
0.30 
0.33 

determined next.) Taking into account the conditions on the free surface, we find the potential uniquely: 

i l  d~. (2.5) 
&b 

r (s ,~)  = 7 
0 

The following differentiation formula is known [7]: 

h ( s ,  7") = ~ d  p l 1/2+i r l  (cos s )  --~ - cot s P11/2+iv (cos s )  -1- (T 2 n t- 1 /4  ) P - l / 2 + i r  (cos s ) .  (2.6) 

Using this formula, we obtain the equality for the integrand of (2.5) 

[ / 1 0~b sin a cos j3r - cos s0) 
0 s  - - c  - , /2  cosh ~ - 2 cos s cosh ~ ,  ~ 1 / 2 + ~  ~ ; ~ U ~  ~1 /2+ ,~  (cos s )  d ,  

0 

7 ( r2 + 1/4) ~ ~ 1 / 2 + ~  ( -  cos ~0) ] 
-t-7/2 c o s h / 7 - 2  c o s s j  ~os-'h ~rr cos/Jr 1 P_l/2+ir(cosa) dr] (2.7) 

0 ~1 /2+i~  (cos so) " 

We find the apparent mass of the liquid. Passing to bipolar coordinates (2.1) in integral (1.2) for m, using 
formulas (2.3)-(2.5) and (2.7), and computing the integrals of the elementary functions, we obtain finally 
m = pa3A, where the function A = A (b/a) has the form 

A = - z r  [15 sin s0 - 11 sin 3 s0 + (Tr - a0) cos s0 (12 + 3 cos 2a0)] 
24 

~> (r  2 + 1/4)[P- l l /2+, , - ( -  c~ so)] 2 
+27r2s in4s07  ~--~os-h- ) ~ p_ll/2+i~ (coss0) P_l/2+i~-(cosso)dr, cosa0 = b/a. 

0 

For calculating the Legendre functions, their relation to the hypergeometric series was used. The numerical 
results were compared with the tables in [8, 9]. 

The dependence of the function A on the parameter bla of the problem (Fig. 2) was studied. For b = 0, 
agreement with the classical result for a ball is demonstrated: A = ~r/3 [1]. When b = a the result agrees with 
the limiting case of a degenerate torus: A ~ 10.158 [2]. Numerical values of A are presented in Table 1. 

3. R o t a t i o n  of  t h e  Body .  We consider the problem of rotation of a spindle-shaped surface in an 
ideal liquid. The Laplace equation and the boundary condition in bipolar coordinates have the form 

0--~ r --~-a / + r - - ~ /  + sin a (cosh/7 - cos a) 042 - O, Oa 
c 2 cos a0 sinh j3 

= cos ~ (cosh 3 - cos ao) 2' 
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where the following equality is used: 

0r 
On 

Define the function ~2 as 

_ cosh/3c-COSa00020a ~=~0" 

~P2 (c~, /3, cy)= 3 J c o t  a0 cosmos/2 c o s h / 3 - 2 c o s a / f ( ' r ) s i n ~ r P l _ l / 2 + i ~ . ( c o s a ) d ' c .  
0 

Satisfying the boundary condition and taking into account (2.6), we get the equation 

(3.1) 

sina0 y ~ 3 sino~0 sinh/3 
2cosh~-- -2cosa0 f(r)sin/3rPl-1/2+i"(c~176176 f ( r ) s in f l rh (ao ,  r) dr = (2 cosh 3 -2cosa 0 ) 5 /2"  

0 0 ' 

Applying the Fourier transform to the last equation and using formulas (2.3) and (2.4) together with the 
value of the integral [10] 

oo 
cos z/3d/3 ~" sinh (Tr - a0) z 

cosh/3 - cos c~0 sin ao sinh zrz ' 
0 

we arrive at a second-order integral Fredholm equation 

TpI_I/2+ir (- Or0)  COS 

u (T) + / u (s) ~ (s) [k ( ,  - ~) - k (T + s)] d~ = 
c o s h  7VT J 

o (3.2) 

P1_1/2+i~ (cos s0) sinh (Tr - a0) s 
y(s)  = f ( s )  h(a0,  s), r ( s ) =  2h(a0 ,  s) ' k ( s ) =  sinhTrs 

We now calculate the apparent moment of inertia. Passing to bipolar coordinates in integral (1.2) for J and 
using formulas (2.3), (2.4), and (3.1), we obtain finally J = pahu, where the function v = v (b/a) has the form 

32~'2 sin 4 ao cos 2 ao y 9  (r) r (r)  rPll/2+i r ( -  cos no) dr 
v = 9 cosh 7rr 

0 

[y,(7-) is the solution of integral equation (3.2)]. 
Figure 3 shows the dependence of the function v on the characteristic parameter b/a of the problem. 

The function v has two extremum points: a local minimum at b = 0 and a local maximum at b/a ~, -0.383. 
In the former case, the apparent moment of inertia is equal to zero, which is a well-known result [1]. The 
approximate value of the local maximum is 0.010, When b = a, the result agrees with the limiting case of a 
degenerate torus: v ~ 2.728. Numerical values of the function v are presented in Table 1. 
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4. C o n d i t i o n  of  N o n s e p a r a t i o n  of  t h e  I m p a c t .  The coordinate of the point of application of the 
momentum is found from the formula 

xo = - J w / m v o .  (4.1) 

The condition of nonseparation is that the momentum pressure Pt = - p ~  is nonnegative everywhere on the 
wet surface of the solid body. It seems obvious that separation starts in the vicinity of that point on the 
surface of the solid body which is most distant from the point of application of the momentum: x = a + b. 
This is confirmed by calculations for the surfaces 0 < b/a < 1 (see Fig. 1). 

Thus, for the surfaces mentioned, the condition of nonseparation is equivalent to nonnegativity of the 
momentum pressure in some vicinity of the point z = a + b. This, in turn, is equivalent to nonnegativity of 
the derivative of the momentum pressure with respect to the normal to the free surface at that point 

0. (4.2) 

Taking into account formulas (1.1), (2.5), (2.7), and (3.1) and calculating derivative (4.2), we obtain 

voA - wa cos noB ) O, 

cot 2 (a0/2) ~ ( r  2 + 1/4) P-11/2+i~ ( -  cosa0) 

A 8 sin (a0/2) + 0 - -  - -  c o s h  71"7" Pll/2+i r ( c o s  or P-1/2+ir ( c o s  c~o) dT, (4.3) ] 

4 
B = jf  (cos dr. 

0 

For the surface - 1  < b/a < 0 ( 7r/2 < a0 < ~r) (see Fig. 1), the assumption about the separation point proves 
to be invalid. In this case, separation starts in the vicinity of that point on the surface of the solid body which 
is closest to the point of application of the momentum: x = - a  - b. The condition of nonseparation in this 
case is determined from formula (4.3), where the absolute value of the function cos a0 must be taken. 

It was established numerically that the functions A and B are nonnegative. From (4.1) and (4.3), we 
get the necessary and sufficient condition of nonseparation of the impact in the form of estimate Ix01 ~< aR. 
The function R = R (b/a) has the form 

u A 
R -  

1 cos a01 t7" 
The numerical values of the function R are presented in the Table 1. When a = b, the result agrees 

with the limiting case of a degenerate torus: R ~ 0.36. 
The author expresses his gratitude to V. I. Yudovich for his interest in this work. 
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